

Chemical formulas

Name	Chemical formula
Average atomic mass of an element	mat=(mat1 · p1% + mat2 p2% +) / 100%
	mat - atomic mass of an element [u] mat1, mat2 - atomic masses of particular isotopes [u] p1%,p2% - percentage content of individual isotopes [%]
Percent concentration	$Cp = (ms/mr) \cdot 100\%$ msol = msolv + ms
	Cp - percent concentration [%] msol - mass of solution [g] ms - mass of substance [g] msolv - mass of solvent [g]
Absolute density	d=m/V
	d - density [kg/m³] m - mass [kg] V - volume [m³]
lon product of water	[H ⁺] · [OH ⁻]=10 ⁻¹⁴ pH+pOH=14
	[H ⁺]- concentration of hydrogen ions [mol/dm ³] [OH ⁻] - concentration of hydroxide ions [mol/dm ³] pH - negative logarithm of the concentration of hydrogen ions pOH - negative logarithm of the concentration of hydroxide ions
Moles	n=ms/M n=V/Vmol n=N/NA
	n - moles [mol] ms - mass of solute [g] M - molar mass [g/mol] V - gas volume [dm³]
	Vmol - molar volume of gas [dm³/mol] N - particles (molecules, atoms, electrons) NA - Avogadro's number NA=6.022 10²³ [particles/mol] or [1 mol]
Molar concentration	$cm=n/Vr=(ms \cdot dr)/(M \cdot mr)$
	cm - molar concentration [mol/dm³]n - moles [mol]M - molar mass [g/mol]mr - solution mass [g]Vr - solution volume [dm³]dr - solution density [g/dm³]
pH of solution	рН=-log[H ⁺] [H ⁺]=10 ^{-рн} [OH ⁻]=10 ^{-рон}
	pH - negative logarithm of the concentration of hydrogen ions [H ⁺] - concentration of hydrogen ions [mol/dm ³] [OH ⁻] - concentration of hydroxide ions [mol/dm ³]
Equilibrium constant for the xA+yB⇔mC+nD process	$K=[C]m \cdot [D]n/[A]x \cdot [B]y$
	[A],[B],[C],[D] - molar concentrations of reagents in equilibrium [mol/dm³] x, y, m, n - coefficients from the reaction equation

Chemical formulas

Name	Chemical formula
Clapeyron equation	pV=nRT
	p - gas pressure [Pa] n - moles[mol] R - gas constant R=8,31 Jmol·K V - gas volume [m³] T - gas temperature [K]
	Ka=[H ⁺][A ⁻]/[HA]
Dissociation constant for monoprotic acid dissociating according to the following equation: $HA \leftrightarrows H^+ + A^-$	Ka – dissociation constant (equilibrium constant of the dissociation reaction) [H ⁺] – molar concentration of hydrogen ions formed during dissociation, measured after the establishment of the equilibrium state [mol/dm ³] [A ⁻] – molar concentration of acid residue ions formed during dissociation, measured after the establishment of the equilibrium state [mol/dm ³] [HA] – concentration of undissociated acid molecules measured after the establishment of the equilibrium state [mol/dm ³]
Law of dilution	$K = (\alpha^2 \cdot Co)/(1-\alpha)$
	K - dissociation constant α - dissociation degree expressed as a decimal fraction Co - initial concentration [mol/dm³]
Law of dilution for weak electrolytes	$K = (\alpha^2 \cdot Co)/(1-\alpha)$, where: $(1-\alpha) \approx 1$ $K = \alpha^2 \cdot Co$
	K - dissociation constant α- dissociation degree expressed as a decimal fraction Co - initial concentration [mol/dm³]
Dissociation degree	α= ndis/nintr lub α= Cdis/Cintr It can also be reported as a percentage then: α=(ndis/nintr) · 100% or α=(Cdis/Cintr) · 100%
	 α - dissociation degree (as a dimensionless number or in [%]) ndis - moles of molecules dissociated into ions [mol] nintr - total moles of molecules introduced into the solution [mol] Cdis - concentration of molecules dissociated into ions [mol/dm3] Cintr - concentration of molecules introduced into the solution [mol/dm3]

Visit the PCC Group Chemical Academy available at www.products.pcc.eu

