Name	Chemical formula
Average atomic mass of an element	mat=(matl $\cdot \mathrm{pl} \mathrm{\%}+$ mat2 p2\% + ...) / 100%
	mat - atomic mass of an element [u] matl, mat2 - atomic masses of particular isotopes [u] $\mathrm{p} 1 \%, \mathrm{p} 2 \%$ - percentage content of individual isotopes [\%]
Percent concentration	$\mathrm{Cp}=(\mathrm{ms} / \mathrm{mr}) \cdot 100 \% \quad \mathrm{msol}=\mathrm{msolv}+\mathrm{ms}$
	Cp - percent concentration [\%]ms - mass of substance $[\mathrm{g}]$$\quad$msol - mass of solution [g] msolv - mass of solvent $[\mathrm{g}]$
Absolute density	$d=m / V$
	d - density $\left[\mathrm{kg} / \mathrm{m}^{3}\right] \quad \mathrm{m}$ - mass [kg] V - volume $\left[\mathrm{m}^{3}\right]$
Ion product of water	$\left[\mathrm{H}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]=10^{-14} \quad \mathrm{pH}+\mathrm{pOH}=14$
	$\left[\mathrm{H}^{+}\right]$- concentration of hydrogen ions $\left[\mathrm{mol} / \mathrm{dm}^{3}\right]$ $\left[\mathrm{OH}^{-}\right]$- concentration of hydroxide ions $\left[\mathrm{mol} / \mathrm{dm}^{3}\right]$ pH - negative logarithm of the concentration of hydrogen ions pOH - negative logarithm of the concentration of hydroxide ions
Moles	$\mathrm{n}=\mathrm{ms} / \mathrm{M} \quad \mathrm{n}=\mathrm{V} / \mathrm{Vmol} \quad \mathrm{n}=\mathrm{N} / \mathrm{NA}$
	n - moles [mol] ms - mass of solute [g] M - molar mass [g/mol] Vmol - molar volume of gas [$\mathrm{dm}^{3} / \mathrm{mol}$] N - particles (molecules, atoms, electrons) NA - Avogadro's number NA=6.022 10^{23} [particles/mol] or [1 mol]
Molar concentration	$\mathrm{cm}=\mathrm{n} / \mathrm{Vr}=(\mathrm{ms} \cdot \mathrm{dr}) /(\mathrm{M} \cdot \mathrm{mr})$
	cm - molar concentration [mol/ $\left.\mathrm{dm}^{3}\right]$ n - moles [mol] M - molar mass [g/mol] mr - solution mass $[\mathrm{g}]$ Vr - solution volume $\left[\mathrm{dm}^{3}\right]$ dr - solution density $\left[\mathrm{g} / \mathrm{dm}^{3}\right]$
pH of solution	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
	pH - negative logarithm of the concentration of hydrogen ions $\left[\mathrm{H}^{+}\right]$- concentration of hydrogen ions $\left[\mathrm{mol} / \mathrm{dm}^{3}\right]$ $\left[\mathrm{OH}^{-}\right]$- concentration of hydroxide ions $\left[\mathrm{mol} / \mathrm{dm}^{3}\right]$
Equilibrium constant for the $x A+y B \leftrightarrows m C+n D$ process	$\mathrm{K}=[\mathrm{C}] \mathrm{m} \cdot[\mathrm{D}] \mathrm{n} /[\mathrm{A}] \mathrm{x} \cdot[\mathrm{B}] \mathrm{y}$
	[A],[B],[C],[D] - molar concentrations of reagents in equilibrium [mol/dm ${ }^{3}$] $x, y, m, n-$ coefficients from the reaction equation

Chemical
formulas ACADEMY

Name	Chemical formula
Clapeyron equation	$\mathrm{pV}=\mathrm{nRT}$
	p - gas pressure $[\mathrm{Pa}]$ V - gas volume $\left[\mathrm{m}^{3}\right]$ n - moles[mol] R - gas constant $\mathrm{R}=8,31 \mathrm{Jmol} \cdot \mathrm{K}$ T - gas temperature $[\mathrm{K}]$
Dissociation constant for monoprotic acid dissociating according to the following equation:$\mathrm{HA} \leftrightarrows \mathrm{H}^{+}+\mathrm{A}^{-}$	$\mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
	Ka-dissociation constant (equilibrium constant of the dissociation reaction) $\left[\mathrm{H}^{+}\right]$- molar concentration of hydrogen ions formed during dissociation, measured after the establishment of the equilibrium state $\left[\mathrm{mol} / \mathrm{dm}^{3}\right.$] [A^{-}] - molar concentration of acid residue ions formed during dissociation, measured after the establishment of the equilibrium state [$\mathrm{mol} / \mathrm{dm}^{3}$] [HA] - concentration of undissociated acid molecules measured after the establishment of the equilibrium state $\left[\mathrm{mol} / \mathrm{dm}^{3}\right]$
Law of dilution	$\mathrm{K}=\left(\alpha^{2} \cdot \mathrm{Co}\right) /(1-\alpha)$
	K - dissociation constant α - dissociation degree expressed as a decimal fraction Co-initial concentration [mol/ dm^{3}]
Law of dilution for weak electrolytes	$\begin{aligned} & \mathrm{K}=\left(\alpha^{2} \cdot \mathrm{Co}\right) /(1-\alpha) \text {, where: }(1-\alpha) \approx 1 \\ & \mathrm{~K}=\alpha^{2} \cdot \mathrm{Co} \end{aligned}$
	K - dissociation constant α - dissociation degree expressed as a decimal fraction Co - initial concentration $\left[\mathrm{mol} / \mathrm{dm}^{3}\right]$
	$\alpha=$ ndis/nintr lub $\alpha=$ Cdis/Cintr It can also be reported as a percentage then: $\alpha=$ (ndis/nintr) $\cdot 100 \%$ or $\alpha=($ Cdis/Cintr) $\cdot 100 \%$

Dissociation degree
α - dissociation degree (as a dimensionless number or in [\%])
ndis - moles of molecules dissociated into ions [mol]
nintr - total moles of molecules introduced into the solution [mol]
Cdis - concentration of molecules dissociated into ions [mol/dm3]
Cintr - concentration of molecules introduced into the solution [mol/dm3]

Visit the PCC Group
 Chemical Academy available at
 www.products.pcc.eu

